
IMPLEMENTATION OF TCP/IP STACK FOR 3L DIAMOND
OPERATING SYSTEM

Marek Kváš
Doctoral Degree Programme (3), FEEC BUT

E-mail: marek.kvas@phd.feec.vutbr.cz

Petr Petyovský
Doctoral Degree Programme (7), FEEC BUT

E-mail: petyovsk@feec.vutbr.cz

Supervised by: Soběslav Valach
E-mail: valach@feec.vutbr.cz

ABSTRACT
This paper deals with implementation of TCP/IP stack for 3L Diamond operating system.
After short introduction to multiprocessor operating system 3L Diamond, main implemen-
tation issues are described. Digital signal processor module based on TMS320C6455 is
used as a target platform.

1. INTRODUCTION
Processor based digital systems are used in the broad spectrum of human activities. Appli-
cations impose many requirements on digital systems that are very often in conflict with
each other. Computational capacity and low power consumption are typical example. One
of the usual ways how to fulfill this kind of requirements is building system with multiple
processors. It can be very advantageous to use general purpose processors (GPP) for user
interface, digital signal processors for these parts of system that have to process signals in
real-time and field programmable gate arrays (FPGA) for glue logic, communication inter-
faces or computational accelerators implementation. Replace such combination of technol-
ogies by only one more general platform would be very difficult and probably less effi-
cient.

Parallel nature of such systems brings some problems also. Software development for mul-
tiprocessor systems is more complex than for single processor. This is the reason why the
market with development tools for multiprocessor systems is growing too. 3L Diamond is
one of these tools (tool suit and operating system).

Connecting devices through computer networks especially Internet is another trend in
modern electronic. Data acquisition, remote control, distribution of computation for higher
reliability or performance can be reasons for connecting devices to the network. Most often
used technology is probably Ethernet based network in combination with TCP/IP protocol
family. TCP/IP stack implementation for Diamond OS is main objective of this work.

2. TOOL-SUIT AND OPERATING SYSTEM DIAMOND
Diamond is a set of tools and operating system for multiprocessor system development [1].
It allows developer to separate implementation of application into two largely independent
sections. The first one is development of SW as set of tasks that communicate through
channels. Channels are only one way for communication between tasks that is allowed.
They are also only way how tasks can be synchronized. SW to HW mapping is the section
one. Every task has to be assigned to any processor in the system.

Very important tool from Diamond tool-suit is configurer. This tool creates final applica-
tion from hardware description and compiled tasks. Hardware description provides confi-
gurer with information about types of available processors and connections between them.
According to this information and task to processor assignment configurer adds to the ap-
plication microkernels that implement system services and channels. This brings big flex-
ibility to the application development. Topology and task to processor assignment can be
change without any coding or even necessity to recompile tasks. This enables developer to
experiment quickly, develop application on different HW than the final one (because it is
under development, for example) or easily migrate to more powerful HW.

Fig. 1 Task to processor assignment: a) SW model of application. b) Mapping to two processors.
c) Mapping to three processors.

Figure 1 demonstrates development process. Part (a) shows software model of application.
Application consists of three independent tasks (A, B, C) that communicate with each oth-
er through channels (1, 2, 3). In this development stage actual implementation of channels
or system topology is not important. Part (b) shows implementation example. Tasks are
mapped into two signal processors (DSP A and B) connected through buses. Tasks A and
B share processor DSP A and task C is placed in DSP C. Configurer adds to both DSPs
such system modules that implement channel 3 as communication through physical bus
and channels 1 and 2 as shared memory in ideal case.

Part (c) shows similar system with one more DSP. We can see that there is no physical
connection between DSP A and B. Even in this case configurer automatically finds the
way how to implement all channels. Data are transferred through DSP C. Because of stan-
dard channel interface this connection is completely transparent for tasks. Task A and B do
not have to share processor time of DSP A and system can work more efficiently.

Every task can consist of several threads. All threads of one task are always placed on the
same processor and share one address space. Threads do not have to communicate through
channels only, but they can use shared memory also. For threads channels are not only
synchronization object. They can use events, signals and semaphores also. Their functio-
nality is similar to other operating systems.

Eclipse based integrated development environment is also part of diamond. Open API for
communication with system through PCI bus and tool for system boot are provided by ap-
plication called Diamond server.

3. TCP/IP STACK IMPLEMENTATION
TCP/IP protocol family is a base of worldwide network Internet. Description of most im-
portant internet protocols can be found in book [2] for example or as RFC (requests for
comments) in [3].

Figure 2 shows comparison between ISO OSI model on part (a), TCP/IP model on part (b),
assignment of actual protocols to layers in part (c) and model of stack for diamond on
part (d).

Target HW for implementation is a multiprocessor module SMT362 [4] developed by
Sundance company. There are two DSPs TMS320C6455 and FPGA Xilinx Virtex IV
placed on this board. Module can be connected to PC via PCI bus using carrier board (e.g.
SMT300Q). This connection makes SW development more comfortable. Module can be
used either as PCI card or standalone module.

Fig. 2 a) ISO OSI model b) TCP/IP c) TCP/IP protocols d) Diamond TCP/IP stack

Network access layer is based on Ethernet in our case. This layer can be divided into MAC
(Media Access Control) and PHY (Physical Layer). MAC is implemented on
TMS320C6455 chip as EMAC unit. This unit is designed to support up to 1Gb/s ethernet.
All other necessary circuits are placed on the SMT362 module.

Our project implements all layers between HW and application layer (figure 2d). There ex-
ist a lot of implementations for number of different platforms. Many of them are based on
BSD (Berkeley Software Distribution) implementation that is open source with very tole-
rant license. We based our project on one of the available versions too.

The biggest advantage of this approach is that stack is well tested (used and being im-
proved during long period). On the other hand, different target platform can be big disad-
vantage. Some architecture differences required significant changes in code. Main issues
that had to be solved were memory management and process synchronization.

Original BSD implementation was designed for platforms equipped with MMU (Memory
Management Unit). Using MMU can prevent system from dangerous memory fragmenta-
tion caused by dynamic allocation. Target HW does not have the MMU. Allocation from
static memory pools was chosen as a solution. Buffers of two sizes are used for data ex-
change between layers, 128 B and 2 KB. Data are represented as chains of these small buf-
fers. That allows easy manipulation like adding headers, fragmentation, reordering and so
on. If we consider throughput of stack (>100 MB/s) we can see that dynamic allocation
would be very inefficient.

Synchronization is much harder problem to solve. The stack consists of several threads
running in the environment of preemptive multitasking. Stack threads can be divided into
three groups. In the original BSD implementation priorities are used for synchronization.

Group with highest priority consists of driver threads. Driver has to respond on interrupts
from HW to assure enough memory buffers for receiving and continuous feeding transmit-
ter with data.

Protocol threads inside the stack are the next group. This one operates on middle priority,
so it can be interrupted by the driver. These threads compose packets from data. That
means mainly adding headers and computing checksums.

Figure 1. Dependency of the stack throughput on cache size

Group with the lowest priority consists of application layer threads and interface between
application and the stack (socket layer).

Another difference between BSD environment and Diamond OS is that stack under BSD
was part of kernel. The stack in diamond operates on the same level as applications. This
together with different priority system and scheduling makes synchronization using priori-
ties impossible. Synchronization has to be implemented using available synchronization
objects instead.

Driver routines that service HW events runs on the highest priority and cannot be desche-
duled for any reason. They have to pass control to other processes on their own. Other

threads run on equal priority. Data consistency of shared structures is protected by critical
sections. Most demanding task is to identify places that need protection and design protec-
tion in such way that deadlocks are avoided and processor time is not wasted for useless
synchronization.

As mentioned above the stack works with memory very intensively. Hi-speed communica-
tion requires huge buffers that have to be placed in slow external memory. Therefore cache
memory subsystem has big influence on stack throughput. Figure 3 documents this depen-
dency. Data are transferred using DMA from and to HW. This together with using cache
memory brings also problems with flushing cache and alignment of data in memory. As
mentioned above buffers are allocated from static memory pools. That makes memory
alignment problems easily solvable.

4. CONCLUSION
Development of this TCP/IP stack has not been finished yet. Development is in the stage
when the stack is fully functional and it is being tested. There are performance data for
TCP and UDP transfers in the table 2. Performance data are strongly dependent on parame-
ters of communication subsystem of testing PC and network utilization. TCP/IP stack that
has been implemented is currently offered as a component of OS Diamond.

Direction PC ‐> DSP DSP ‐> PC

Protocol
Channel utilization

[%]
Throughput
[MB/s]

Channel utiliza‐
tion [%]

Throughput
[MB/s]

TCP 90 112 51 64

UDP 80 100 80 100

Table 2. Diamond TCP/IP stack performance

ACKNOWLEDGEMENT

This work has been supported in part by Ministry of Education, Youth and Sports of the
Czech Republic (Research Intent MSM0021630529 Intelligent systems in automation),
Grant Agency of the Czech Republic (102/09/H081 SYNERGY - Mobile Sensoric Sys-
tems and Network) and by Brno University of Technology.

LITERATURA
[1] Websites of 3L company [online]. [2009-02-10]. Available on:

<http://www.3l.com/what-is-3l-diamond>

[2] STEVENS, W. R.: TCP/IP Illustrated, Addison-Wesley 1994, ISBN 0-201-63346-9.

[3] Documents RFC [online]. [2009-02-10]. Available on: <http://rfc-ref.org/>

[4] Sundance SMT362 module datasheet [online]. [2009-02-10]. Available on:
<http://sundance.com/web/files/productpage.asp?STRFilter=SMT362>

